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Dissipative spin-tunneling transitions at biased resonances in molecular magnets such as Mn12 Ac are
controlled by the dipolar field that can bring the system on and off resonance. It is shown that this leads to spin
relaxation in form of propagating fronts of tunneling, with the dipolar field adjusting self-consistently to
provide a zero bias within the front core. There are two regimes of the front propagation: laminar and
nonlaminar with discontinuous magnetization and dipolar field. In the laminar regime the speed of the front can
exceed that of the magnetic deflagration, if the transverse field is large enough. Fronts of tunneling can be
initiated by magnetic field sweep near the end of the crystal.
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I. INTRODUCTION

Molecular magnets �MM�, including their first and mostly
studied representative Mn12 Ac,1 have initially attracted at-
tention as molecules with the effective big spin S=10 show-
ing bistability as a result of a strong uniaxial anisotropy
−DSz

2.2 Resonance spin tunneling manifested in the magnetic
hysteresis loops3–5 with steps at the field-values B�Bk
=kD / �g�B�, k=0, �1, �2, . . . made molecular magnets a
hotspot of research during more than 10 years.

Crystals of molecular magnets do not show a significant
exchange interaction because the magnetic core of the mol-
ecule is screened by organic ligands. Thus, magnetic mol-
ecules remain largely superparamagnetic, although MM can
order below 1 K due to dipole-dipole interactions �DDI�.6,7

An important role of the DDI is that the dipolar field
created by the spins is large enough to change the resonance
condition for the up and down spins and thus to strongly
influence spin tunneling. Fully ordered spins in an elongated
Mn12 Ac crystal create the dipolar-field B�D��52.6 mT at a
molecule.7,8 This becomes comparable with the resonance
width defined by the tunnel splitting � in transverse mag-
netic fields above 5 T, for the k=1 tunneling resonance. For
smaller transverse fields, � is much smaller and thus the DDI
can completely block the resonant tunneling. The action of
the dipolar field is dynamical and self-consistent since tun-
neling of spins causes the dipolar field to change, blocking or
allowing resonant transitions.

The role of the DDI in spin tunneling was recognized in
Refs. 9–16 where Monte Carlo simulations were done on the
basis of a phenomenological model involving discrete jumps
of the spins through the instantaneous “tunneling window.”
The main purpose of these studies was to explain the �t
relaxation experimentally observed in Mn12 Ac.17

It was not understood until recently that DDI in molecular
magnets can result in spatially inhomogeneous states creat-
ing the dipolar field such that the system is on resonance in
some regions of space where spins can relax, leading to mov-
ing fronts. An example is the domain wall in elongated
dipolar-ordered crystals of Mn12 Ac at low temperatures. The
reduced dipolar field at T=0 in Fig. 2 of Ref. 7 is close to
zero in the region around the center of the domain wall with

the width on the order of the crystal’s thickness. It should be
mentioned that Mn12 Ac remains the only molecular magnet
that can be grown in long crystals required for such kind of
phenomena.

Similar effects can take place in the tunneling at biased
resonances, k�1. If the external field approaches the reso-
nance by a slow sweep, as was the case in many experi-
ments, moving walls of tunneling can be created near the
ends of long crystals �where the dipolar bias is smaller� and
then penetrate into their depth with a speed unrelated to the
sweep rate.18 The role of the sweep is only to create an initial
state for the wall of tunneling to start. It was argued that this
mechanism can explain the width of the steps in dynamic
hysteresis curves3–5 by the time needed for the wall of tun-
neling to cross the crystal. Nonuniformity of the magnetiza-
tion in Mn12 Ac developing during spin tunneling was de-
tected by local measurements earlier.19

The walls or self-organized patterns of spin tunneling in-
vestigated in Ref. 18 are not exactly fronts because they are
lacking the combined space-time dependence on the argu-
ment z−vt only, where v is the speed of the front. Frozen-in
quasiperiodic spatial structures have been found behind these
moving walls. In fact, true smooth fronts of spin tunneling
do exist in the range of the external bias smaller than that in
Ref. 18. Studying these fronts and their transition to the
moving walls with a nonuniformity behind with increasing
the bias is the purpose of this article. It will be shown that
there are two regimes.

For the external bias not exceeding a critical value, the
true fronts �that can be called “laminar”� are realized in
which the dipolar field adjusts to create a resonance in the
front region. In the limit of strong dipolar field �relative to
the resonance width� the front speed and the magnetization
behind the front can be calculated analytically and are inde-
pendent of the strength of the DDI.

For a larger external bias, the magnetization distribution
and thus the dipolar field in the wall cannot fully adjust to
provide the resonance condition. In this case the wall is mov-
ing with a quasiperiodically varying speed leaving a quasip-
eriodic state behind. The average wall speed decreases with
the DDI strength quadratically.

The dipolar mechanism of spin tunneling is resembling
magnetic deflagration in Mn12 Ac.20,21 Here, instead of the

PHYSICAL REVIEW B 80, 014406 �2009�

1098-0121/2009/80�1�/014406�11� ©2009 The American Physical Society014406-1

http://dx.doi.org/10.1103/PhysRevB.80.014406


temperature, the relaxation rate is controlled by the self-
consistent dipolar field bringing the system on or off reso-
nance. Thus, in a sense, one can call the phenomenon studied
here cold deflagration. Of course, the heat release in the
course of the cold deflagration can give rise to the regular
deflagration, especially for high resonances k and well ther-
mally isolated crystals. In this case the two kinds of defla-
gration can compete.

The rest of the article is organized as follows: in Sec. II
the dynamics of spin tunneling between the metastable
ground state and a resonant excited state on the other side of
the barrier is considered. The simplified overdamped equa-
tions of motion are obtained in the case of the tunnel-
splitting frequency � /� smaller than the damping of the ex-
cited state �m�. It is further argued that in the presence of
disorder that spreads resonances one can use overdamped
equations in a generalized form also for larger �. In Sec. III
the dipolar field created by a wall of magnetization is calcu-
lated for the cylindrical and ribbon geometries. In Sec. IV the
full system of cold-deflagration equations is written and
transformed into dimensionless form. In Sec. V the limit of
strong DDI is studied and analytical expressions for the re-
sidual magnetization behind the front and the front speed are
obtained. Section VI provides the results of numerical calcu-
lations in both regimes of the wall propagation.

II. SPIN TUNNELING AND RELAXATION

We will be using the generic giant-spin model of molecu-
lar magnets with the Hamiltonian

Ĥ = − DSz
2 − g�BBzSz − g�BBxSx + . . . , �1�

where D is the uniaxial anisotropy and

B = Bext + B�D� �2�

is the total magnetic field, including the external and dipolar
fields. Suppressed terms in the Hamiltonian can include the
biaxial and fourth-order anisotropy that can make a contri-
bution into the tunnel-splitting � of the resonant spin up and
down states. Since the most interesting situation arises in the
case of a large � that can only be created by a strong trans-
verse field, the dropped terms will not be needed. For Bx

=0 the exact quantum states of Ĥ are �m� with −S�m�S,
their energies being 	m=−Dm2−g�BBzm. The resonance-
condition 	m=	m� between all states �m� on the left side of
the barrier �m
0� and �m�� on the right side of the barrier
�m�=−m−k� is satisfied for the resonance-fields

Bz = Bk, Bk = kD/�g�B�, k = 0,1, . . . �3�

This resonance condition turns out to be independent of the
transverse field.

Application of the transverse field leads to the two effects.
First, each state �m� hybridizes with neighboring states
within the same well forming the state that can be denoted as
��m�. Physically, this corresponds to spin canting in the di-
rection of the transverse field. Second, the states ��m� on
different sides of the barrier hybridize because of the reso-
nance spin tunneling near Bz=Bk. Of course, one can speak

of the states ��m� for not-too-strong transverse field, so that
there still are low-lying states well localized within one of
the wells. The states ��m� provide a basis for a simplified
treatment of spin tunneling and relaxation near resonances
that otherwise has to be considered within the density-matrix
formalism.22,23

Consider the metastable ground state of a molecular mag-
net, ��m�= ��−S�, near a tunneling resonance with an excited-
state ��m�� on the right side of the barrier, Fig. 1 of Ref. 18.
The dynamics of tunneling at low temperatures is described
by the subset of the density-matrix equation �DME� taking
into account only these two levels. The level ��m�� can decay
into lower-lying levels within the same well with rate �m�.
Since there are no incoming relaxation processes for the state
��m�� at low temperatures, the DME can be simplified to the
form of the damped Schrödinger equation

ċ−S = −
i

2

�

�
cm�

ċm� = � iW

�
−

1

2
�m�	cm� −

i

2

�

�
c−S. �4�

Here, � is the tunnel splitting and W
	m−	m� is the energy
bias between the two levels,

W = �S + m��g�B�Bz − Bk + Bz
�D�� 
 Wext + W�D�. �5�

In fact, here one should use the values of S and m� corrected
for spin canting. Since ��−S� is the lowest state in the left
well, it cannot decay. The numbers of particles in the states
are defined by

n−S = �c−S�2, nm� = �cm��
2, �6�

etc. The spin polarization in our low-temperature tunneling
process is given by �Sz�=−Sn−S+�m=m�

S mnm. As the states
with m=m�+1, . . . ,S−1 decay faster than ��m��, their contri-
bution can be neglected. Then for the normalized spin-
average variable

�z 
 �Sz�/S , �7�

one obtains

�z = 1 − 2n−S − �1 − m�/S�nm�. �8�

In the overdamped case �m�� /� the variable cm� in Eq.
�4� adiabatically adjusts to the instantaneous value of c−S.
Setting ċm�=0 in the second of these equations one obtains

cm� =
�

2�

c−S

W/� + i�m�/2
. �9�

Inserting it into the first of Eq. �4� one obtains

ċ−S = −
i�2

4�2

c−S

W/� + i�m�/2
. �10�

With the help of Eq. �6�, one obtains the equation for the
metastable population n−S in the form
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ṅ = − �n , �11�

where the subscript −S has been dropped for transparency
and the dissipative tunneling rate � is given by22

� =
�2

2�2

�m�/2
�W/��2 + ��m�/2�2 . �12�

In the overdamped limit one has nm��n−S
n, so that Eq. �8�
simplifies to

�z = 1 − 2n . �13�

The decay-rate �m� is mainly due to the relaxation be-
tween the adjacent energy levels in the right well, �m�
=�m�,m�+1, see Eq. �A9� of Ref. 24 or Eq. �294� of Ref. 23.
For k=1 and thus m�=9 one has �m��107 s−1, while � /�
reaches a comparable value in the transverse field above 3 T.
At higher transverse fields the tunneling dynamics should be
underdamped. Resonances with higher k have larger splitting
� and become underdamped in smaller transverse fields.

In the case of underdamped resonances, � /���m�, the
rate of dissipative spin tunneling can be described by the
integral relaxation time �int resulting in the effective rate23

� =
1

�int
=

�2

2�2

�m�/2
�2 + ��m�/2�2 , �14�

where

����2 
 W2 +
1

4
�1 +

S − m�

2S
	�2. �15�

One can see that in the underdamped case the width of the
Lorentzian becomes of the order of �� /2� /�, compared to
�m� /2 in the overdamped case. Although Eq. �11� with �
given by Eq. �14� does not accurately describe the oscillating
dynamics of the system in the underdamped case, in particu-
lar the Landau-Zener effect, it will be used below as an ap-
proximation for the many-body problem with coupling via
the dipolar field in both overdamped and underdamped cases.
A more rigorous approach based on Eq. �4� requires much
more computer time because of fast oscillations. On the
other hand, oscillations at tunneling resonances have never
been experimentally observed in MM because of the reso-
nance spread as a result of ligand disorder and other factors.
For the low-bias resonances such as k=1 and thus m�=S
−1 the contribution of nm� in Eq. �8� can be neglected, thus
Eq. �13� will be used in all cases.

III. DIPOLAR FIELD

The dipolar field and ensuing dipolar bias of tunneling
resonances in crystals of molecular magnets have been dis-
cussed in details in Ref. 7, so that only a short summary with
necessary changes will be provided below.

The z component of dipolar field at site i �i.e., at a par-
ticular magnetic molecule�, created by molecular spins polar-
ized along the z axis is given by

Bi,z
�D� =

Sg�B

v0
Di,zz, Di,zz 
 �

j

�ij� jz, �16�

where v0 is the unit-cell volume and

�ij = v0
3�ez · nij�2 − 1

rij
3 , nij 


rij

rij
. �17�

Inside a uniformly magnetized ellipsoid the dipolar field is

uniform and one has Dzz= D̄zz�z, where

D̄zz = D̄zz
�sph� + 4���1/3 − n�z�� , �18�

� is the number of magnetic molecules per unit cell and
n�z�=0, 1/3, and 1 for a cylinder, sphere, and disk, respec-

tively. D̄zz
�sph� depends on the lattice structure. For Mn12 Ac

lattice summation yields D̄zz
�sph�=2.155 that results in D̄zz

�cyl�

=10.53 for a cylinder. Then Eq. �16� yields the dipolar field
Bz

�D��52.6 mT in an elongated sample that was also ob-
tained experimentally.8

The dipolar bias W�D� in Eq. �5� can be written in the form

W�D� = �1 +
m�

S
	EDDzz, �19�

where

ED 
 �Sg�B�2/v0 �20�

is the dipolar energy, ED /kB=0.0671 K for Mn12 Ac. Since
the dipolar field depends on the magnetization and its values
in an elongated crystal can change between −52.6 and 52.6
mT, one can conclude that, according to Eq. �5�, the reso-
nance condition W=0 can be, in principle, satisfied in the
dipolar tunneling window around the resonance −52.6 mT
�Bz−Bk�52.6 mT. This dipolar window is much smaller
than the distance between the two tunneling resonances that
is about 0.5 T. Practically, for a negative external bias Bz
−Bk the relaxation is hindered by the causality: to produce a
positive dipolar field that would balance the negative exter-
nal bias, spins should already be on the right side of the
barrier.

For a cylinder of length L and radius R with the symmetry
axis z along the easy axis, magnetized with �z=�z�z�, the
reduced z field along the symmetry axis has the form

Dzz�z� = 
−L/2

L/2

dz�
2��R2�z�z��

��z� − z�2 + R2�3/2 − k�z�z� , �21�

where

k 
 8��/3 − D̄zz
�sph� = 4�� − D̄zz

�cyl� � 0, �22�

k=14.6 for Mn12 Ac. In particular, for a long uniformly po-
larized cylinder one obtains

Dzz�z� =
2��z

�z2 + R2
�z + �D̄zz

�sph� − 2��/3��z. �23�

At the left end of the long cylinder, z=0, one has Dzz

= �D̄zz
�sph�−2�� /3��z. For Mn12 Ac one obtains Dzz=−2.03�z,

having the sign opposite to that of the field in the depth,
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D̄zz
�cyl��z. This means that a homogeneously magnetized state

in the resonance external field Bz=Bk may be unstable with
respect to spin tunneling beginning in the vicinity of the ends
of the cylinder, as at some point near the end the resonance
condition Dzz�z�=0 is satisfied. To the contrary, dipolar field
in the depth of a uniformly magnetized cylinder provides the
dipolar bias that puts the system off resonance and makes the
transition rate � very small. If the external field Bz is swept
in the positive direction toward the resonance, spin tunneling
begins near the ends of the crystal and then it propagates
inside the crystal as a moving wall of tunneling, as the dipo-
lar field changes self-consistently.18

One can also calculate the dipolar field on the z symmetry
axis of a slab of length L and sides a and b. In the case a
�b the results are similar to those for the cylinder above.
For a thick slab �a ribbon� with a�b one obtains

Dzz�z� = 
−L/2

L/2

dz�
2a��z�z��

�z� − z�2 + �a/2�2 − k�z�z� �24�

that has the kernel less localized than that of Eq. �21�.

IV. COLD-DEFLAGRATION EQUATIONS

The phenomenon of cold deflagration is described by a
collection of Eq. �11� for every magnetic molecule in the
crystal, with the dipolar field controlling transitions being
determined by the instantaneous nonuniform magnetization.
As the full three-dimensional �3D� problem with a long-
range interaction requires too much computer power, here
the one-dimensional approximation will be made. The mag-
netization is considered as a function of the coordinate z
only, i.e., the deflagration fronts are flat, and the dipolar field
is taken along the symmetry axis as in Eq. �21� that will be
used below. Of course, the dipolar field away from the sym-
metry axis is different, that will result in nonflat fronts. How-
ever, to avoid complications in demonstrating the basic phe-
nomenon, these effects will be ignored here.

It is convenient to introduce the dimensionless time t̃ and
coordinate z̃ as

t̃ 
 �rest, z̃ 
 z/R , �25�

where �res is the resonance relaxation rate following from
Eq. �14� with �S−m�� / �2S� neglected,

�res =
�2

�2

�m�

��/��2 + �m�
2 . �26�

Then Eq. �11� becomes

d

dt̃
n�z̃, t̃� = − F�z̃, t̃�n�z̃, t̃� , �27�

where F contains integral dependence on n�z̃ , t̃� via Dzz�z̃ , t̃�,

F�z̃, t̃� =
1

1 + 4ẼD
2 W̃2�z̃, t̃�

, ẼD 

2ED

��2 + �2�m�
2

. �28�

The dimensionless bias W̃=W / �2ED�, with W defined by Eq.
�5�, has the form

W̃�z̃, t̃� = W̃ext + W̃�D��z̃, t̃� = W̃ext + Dzz�z̃, t̃� , �29�

where

W̃ext =
Sg�B

ED
�Bz − Bk� �30�

and Dzz�z̃ , t̃� defined by Eq. �21� can be rewritten in the form

Dzz�z̃, t̃� = 
−L̃/2

L̃/2
dz̃�

2���z�z̃�, t̃�
��z̃� − z̃�2 + 1�3/2 − k�z�z̃, t̃� , �31�

where �z�z̃ , t̃�=1−2n−S�z̃ , t̃� and L̃
L /R.

For a long sample, L̃→�, one can seek for a solution of
Eq. �27� in the form of a moving front depending on the
combined argument �
z−vt, where v is the front speed. In

reduced units one has �̃
 z̃−v�t̃, where the relation between
the real and reduced front speeds has the form

v = v��resR . �32�

Equation �27� for the front becomes

v�
dn

d�̃
= F��̃�n , �33�

where F��̃�= �1+4ẼD
2 W̃2��̃��−1 contains

Dzz��̃� = 
−�

�

d�̃�
2���z��̃��

���̃� − �̃�2 + 1�3/2
− k�z��̃� . �34�

Equation �32� makes the dependence of v on R and �res

obvious. However, there are nontrivial parameters ẼD and

W̃ext that enter v�.
For a ribbon one can introduce z̃
2z /a and replace Eqs.

�31� and �34� by the corresponding expressions following
from Eq. �24�.

The cold-deflagration equations can be solved by discreti-
zation that reduces them to a system of nonlinear ordinary
first-order differential equations. The front of tunneling for

ẼD=20 and W̃ext=2 is shown in Figs. 1 and 2 while more
details will be given in Secs. VI and VII.

z/(2R)

tΓres

n

Wext = 2
ED = 20

~
~

FIG. 1. �Color online� Propagating front of cold deflagration for

W̃ext=2 and ẼD=20. Cold deflagration starts after some ignition
time that depends on the initial condition.
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V. LIMIT OF STRONG DIPOLAR FIELD

Unless a strong transverse field is applied, the numerical

value of ẼD of Eq. �28� for Mn12 Ac is large. In particular, in

the overdamped limit ẼD�ED / ���m���103 for m�=S−1. In
this case one could think that F is negligibly small every-
where except for a very close vicinity of the resonance, so
that the total relaxation and thus the speed of the front are
very small. However, as the numerical solution shows, the
system finds the way to relax faster by forming a front region

of a width l�R where W̃ is small and F is of order one. In
this extended region resonant tunneling transitions take

place. Beyond the front region W̃ deviates from zero and F
becomes negligibly small. As a result, n��� changes practi-
cally only within the front core.

Basing on these insights, one can construct a perturbative

expansion in powers of 1 / ẼD and show that the solution n��̃�
and the front speed v� become independent of ẼD for ẼD

1. One can search for �z��̃� in the form

�z��̃� � �z
�0���̃� + �z

�1���̃�/ẼD, �35�

and similarly for n��̃�= �1−�z��̃�� /2. The term �z
�0���̃� is de-

fined by the condition that within the front region −l̃��̃� l̃,

with the width l̃ to be determined self-consistently, the con-

tribution of �z
�0���̃� into the bias W̃ is zero. If this is fulfilled,

the term 4ẼD
2 W̃2 in the denominator of Eq. �28� is of order

one due to the correction �z
�1���̃�, so that in the front-region F

is of order one. In the region before the front, l̃
�̃, one has

n�0���̃�=1 and �z
�0���̃�=�zi=−1. Everywhere behind the front,

�̃
−l̃, one has final values n�0���̃�=nf and �z
�0���̃�=�zf that

are to be determined. In the front region the condition W̃
=0 with Eq. �29� yields the integral equation

W̃�0���̃� = 0, − l̃ � �̃ � l̃ , �36�

where

W̃�0���̃� = W̃ext + 
−l̃

l̃
d�̃�

2���z
�0���̃��

���̃� − �̃�2 + 1�3/2
− k�z

�0���̃�

+ 2����zi�1 +
�̃ − l̃

���̃ − l̃�2 + 12
	

+ �zf�1 −
�̃ + l̃

���̃ + l̃�2 + 12
	� . �37�

This equation determines the zero-order profile �z
�0���̃�, in-

cluding l̃ and �zf.
Equation �36� can be solved numerically by discretizing

the integral using N+1 equidistant points within the interval

�−l̃ , l̃� given by �̃i=−l̃+2l̃i /N, i=0,1 , . . . ,N. The value at the
right end of the interval is fixed by the boundary-condition

�z
�0���̃N�=�zi=−1. Thus, there are total N+1 unknowns in-

cluding l̃, that can be found by solving the system of N+1

equations W̃�0���̃i�=0 with i=0,1 , . . . ,N. Note that this sys-

tem of equations is nonlinear because of l̃. In this way one
finds the zero-order magnetization profile in the front and the

magnetization behind the front �zf for any W̃ext�0. In par-

ticular, for Mn12 Ac one obtains l̃=0.848.
On the other hand, one can find important analytical re-

sults if one searches for the solution in the form

�z
�0���̃� =

�zf + �zi

2
−

�zf − �zi

2
f��̃� , �38�

where f��l̃�= �1. Substituting this into Eq. �37� one obtains

the equation for f��̃�

0 = W̃ext −
�zf − �zi

2


−l̃

l̃
d�̃�

2��f��̃��

���̃� − �̃�2 + 1�3/2
+ k

�zf − �zi

2
f��̃�

+ D̄zz
�cyl��zf + �zi

2
− ����zf − �zi�

�� �̃ + l̃

���̃ + l̃�2 + 12
+

�̃ − l̃

���̃ − l̃�2 + 12
	 , �39�

where D̄zz
�cyl�=4��−k. One can see that there are even and

odd terms in �̃ in this equation and f��̃� is odd. The even and
odd parts of this equation should turn to zero independently
of each other. For the even part one obtains the equation

0 = W̃ext + D̄zz
�cyl��zf + �zi

2
�40�

that with �zi=−1 yields �zf =1−2W̃ext / D̄zz
�cyl� and

- 4 - 2 0 2 4

5

0

5

10

z/(2R)

10n

W
~

Wext = 2
~

2l

Front propagation

FIG. 2. �Color online� Spatial profiles of the metastable popula-

tion n and the reduced bias W̃ in the front for W̃ext=2 and ẼD=20.

Everywhere in the front the system is near the resonance, W̃�0. At
this value of the bias periodic structures behind the front begin to
emerge.
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nf =
1 − �zf

2
=

W̃ext

D̄zz
�cyl�

�41�

for the fraction of metastable molecules behind the front.
Note that since 0�nf �1, this solution only exists for

0 � W̃ext � D̄zz
�cyl�. �42�

The odd part of Eq. �39� yields the equation

− 
−l̃

l̃
d�̃�

f��̃��

���̃� − �̃�2 + 1�3/2
+

k

2��
f��̃� =

�̃ + l̃

���̃ + l̃�2 + 12

+
�̃ − l̃

���̃ − l̃�2 + 12
�43�

that defines f��̃� and l̃. They can be found numerically by

discretization as described above. The expression for n�0���̃�
in terms of f��̃� following from Eq. �38� has the form

n�0���̃� =
1

2�1 +
W̃ext

D̄zz
�cyl�	 +

1

2�1 −
W̃ext

D̄zz
�cyl�	 f��̃� . �44�

Using the method of Ref. 7, one can show that the approxi-

mate solution for f��̃� valid for ��̃��1 has the form

fapp��̃� = �̃/l̃app, �45�

where

l̃app =
k

��4���2 − k2
. �46�

For a Mn12 Ac cylinder one obtains l̃app=0.7137.

Numerically found f��̃� and its approximation fapp��̃� for a

Mn12 Ac cylinder is shown in Fig. 3 together with f��̃� for a
thick slab �ribbon� discussed at the end of this section. In

Fig. 4, the reduced energy bias W̃ is shown in the cylindric
geometry for different values of the external bias.

The speed of the front v� can be found by considering the

effect of the correction �z
�1���̃�, although one does not need to

evaluate this correction explicitly. In Eq. �33� one has to keep

�z
�1���̃� in F . This makes F zero order in 1 / ẼD. On the other

hand, dn /d�̃ and n outside F can be taken at zero order in

1 / ẼD. One thus can rewrite Eq. �33� in the interval −l̃
�̃


 l̃ in the form

v�

F
= g��̃�, g��̃� 
 n�0��dn�0�

d�̃
	−1

. �47�

There is a point inside the interval −l̃
�̃
 l̃ where W
changes its sign. At this point 1 /F reaches its minimal value
1. On the other hand, this point can be determined as the
minimum of the right-hand side of this equation. Then, ob-
viously,

v� = min�g��̃�� . �48�

Using Eq. �44� one obtains

g��̃� =
Q + 1 + f��̃�

f���̃�
, Q 


2W̃ext

D̄zz
�cyl� − W̃ext

. �49�

One can see that for W̃ext=0 one has min�g��̃��=0, achieved

at �̃= l̃ where f =−1. This yields v�=0 at W̃ext=0. In the gen-
eral case one has to investigate

g���̃� = 1 −
f���̃�

f�2��̃�
�Q + 1 + f��̃�� . �50�

Since g��−l̃�=0 at

Q = Qc = f�2�− l̃�/f��− l̃� , �51�

one concludes that for Q�Qc the minimum is achieved at

�̃=−l̃ and thus

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

thick slab

cylinder

~

~ξ

f(ξ)

FIG. 3. Normalized magnetization profile in the cold-
deflagration front for long Mn12 Ac crystals of cylindrical and thick-
slab shape. Approximate result for the cylinder is shown by a
dashed line.
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~
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W

~
Wext = 5

~
Wext = 0

~
Wext = 0

~
Wext = 5

FIG. 4. Normalized energy bias W̃ in the cold-deflagration front
in long Mn12 Ac crystals in the limit of strong dipolar field. In the

central part of the front W̃�0 so that resonance transitions take
place.

D. A. GARANIN PHYSICAL REVIEW B 80, 014406 �2009�

014406-6



v� =
Q

f��− l̃�
=

W̃ext

D̄zz
�cyl� − W̃ext

2

f��− l̃�
. �52�

For a cylinder of Mn12 Ac one has 2 / f��−l̃�=2.31 and Qc
=0.809. According to Eq. �49�, the latter translates into

W̃ext,c=3.03. Then Eq. �30� yields the value of the corre-
sponding bias-field Bz,c−Bk=15 mT. For Bk�Bz�Bz,c, the
front speed in real units obtained with the help of Eqs. �30�,
�16�, and �20� is given by

v = R�res
Bz − Bk

Bz
�D� − Bz + Bk

2

f��− l̃�
. �53�

For Qc�Q �and thus W̃ext,c�W̃ext� one has to find min�g��̃��
from the condition g���̃�=0 that leads to somewhat smaller
front speeds than given by the formulas above. However, the
laminar regime of the cold-deflagration fronts breaks down

at the external bias smaller than W̃ext,c, so that the results of

this section for W̃ext,c�W̃ext are irrelevant.
Let us now consider the slab geometry. From Eq. �24�

with z̃
2z /a instead of Eq. �37� one obtains the equation

W̃�0���̃� = W̃ext + 
−l̃

l̃
d�̃�

4��z
�0���̃��

��̃� − �̃�2 + 1
− k�z

�0���̃�

+ 4���zi��

2
+ Arctan��̃ − l̃�	

+ �zf��

2
− Arctan��̃ + l̃�	� . �54�

The numerically obtained result for the normalized magneti-

zation profile f��̃� is shown of Fig. 3, compared to that of a
cylinder. Since the kernel in the integral equation for the slab
is less localized for a thick slab than for a cylinder, the front-

width l̃=1.61 for a thick slab is larger than l̃=0.848 for the
cylinder. All formulas obtained above are valid for a thick

slab as well, however with different constants: 2 / f��−l̃�
=4.79, Qc=0.540, and W̃ext,c=2.24.

VI. NUMERICAL RESULTS

As mentioned at the end of Sec. IV, the cold-deflagration
equations can be solved by discretization reducing them to a
system of ordinary differential equation. Numerical calcula-
tions use the semi-infinite geometry including the region of
length −L /2�z�L /2 where equations are solved plus the
range L /2
z�� where the magnetization is fixed to �z=
−1 corresponding to the metastable state. The latter is needed
to create the dipolar field in the main region −L /2�z
�L /2 that corresponds to the semi-infinite sample. This al-
lows to operate on shorter samples that saves computer time.
When the deflagration front reaches z=L /2, it cannot go fur-
ther, so the results near this point become unphysical and
should be ignored.

The first thing revealed by computations is that for large

values of ẼD it is very important to prepare the system in the

initial state close to the actual front, with W̃�0 within the
front core. The further is the initial state from this optimal
state, the more time �ignition time� the system needs to ad-
just so the front could start moving across the sample. For
initial states far from the front states, the ignition time can be
so long that there is a significant off-resonance relaxation in
the bulk of the crystal during it. For smaller dipolar fields

such as ẼD�3 �that can be achieved by applying a strong
transverse field to increase ��, ignition of the fronts is much
easier. Another possibility to ignite the cold deflagration is to
slowly sweep the external field in the positive direction, ap-
proaching the resonance,18 which will be considered later on.

Computations for large ẼD and not-too-strong bias W̃ext
corroborate semianalytical results of the preceding section.
For z not too close to the ends of the interval −L /2�z
�L /2, the variables indeed depend on �=z−vt, as it should
be in a moving front. 3D plots of n�z , t� are smooth and look
qualitatively as in Fig. 1, and the ignition time can be re-
duced to zero by a better choice if the initial state. The meta-
stable population n̄�t� averaged over the length of the crystal
is almost flat during the ignition time, then it decreases lin-
early as the front travels through the crystal, then becomes
nearly flat again after the front arrives at the right end of the
interval −L /2�z�L /2, see Fig. 16 of Ref. 21 for the stan-
dard magnetic deflagration and Fig. 4 of Ref. 18 for the cold
deflagration. The front speed can be obtained as v
=L / �tarrival− tignition�.

The reduced front speed v�, Eq. �32�, vs W̃ext, Eq. �30�, is

shown for ẼD=100 in Fig. 5�a�. For not-too-large bias,

W̃ext�1, the numerical results are in good agreement with
Eq. �52� shown by a solid line. In this region the numerical
results do not depend on the number of discrete points used

in the solution. Similar results for ẼD=20 in Fig. 5�b� are
further from the theoretical curve �not shown� because the
condition of a strong dipolar field is not fully satisfied. Also

there is some nonzero speed in the region W̃ext
0 that is,
however, quickly decreasing with the negative bias.

With increasing the external bias, the laminar solution in
the form of a smooth moving front loses its stability. In Fig.
2 one can already see wiggles behind the front that represent
frozen-in spatial structures with the period of order R. With

increasing W̃ext or ẼD, these features progress and the region
of transitions moves with oscillating speed �see Fig. 6�. To
distinguish this transition region from the true front, it was
called “wall of transitions.”18 It would cost significant addi-
tional efforts to find out analytically or numerically whether
the transition from the laminar to nonlaminar regime with

increasing W̃ext is gradual or there is a threshold. One impor-
tant observation is that the spatial structures behind the front
are discontinuous on z, while the analytical result of Eq. �48�
was obtained based on the assumption that the solution is
continuous.

As the laminar regime breaks down, the instability is
manifested by the dependence of the results for v� in Fig. 5
on the number of discretization points. With increasing N the

discontinuities in v��W̃ext� become smaller but, unfortunately,
increasing N is limited by computing resources. For larger
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W̃ext the front speed reaches a plateau that depends on ẼD,
and curves with different discretizations converge again.

In the nonlaminar regime the magnetization in the front
cannot completely adjust so that bias in the front core would
be very close to zero and the resonance transitions could
occur at a rate close to the maximal rate �res. This is the

reason why v��W̃ext� drops after reaching a maximum, as the
instability begins. Still the very existence of the front in this
case suggests that the system is closer to the resonance in

this region than in the others. The values of W̃ in the front

should be of order 1, so that in Eq. �28� one has F�1 / ẼD
2 .

This is supported by the computations shown in Fig. 7: in the

plateau region �in particular for W̃ext=5� the front speed fits
to

v� � 8/ẼD
2 �55�

for large ẼD.

VII. COLD DEFLAGRATION INITIATED
BY FIELD SWEEP

As was mentioned above, for most of initial conditions
the development of the cold-deflagration front requires a

very long ignition time. If the initial condition is chosen in a
special way close to the actual front, the process starts im-
mediately. However, one cannot find a practical way to pre-
pare such initial state.

Fortunately, as was found in Ref. 18, the front can be
ignited by a slow time-linear sweep Wext=vWt starting with a
value of Wext that ensures W
0 everywhere in the sample
�see Fig. 8�. The sweep rate can be conveniently param-
etrized by 	
��2 / �2�vW� and slow sweep requires 	1.
As Wext increases, the condition W=0 would be first reached
at the end of the sample, then the resonance point would
move into its depth. However, transitions induced by the
sweep �seen in Fig. 8 before the ignition� change the dipolar
field so that the system does not cross the resonance in the
region near the end of the sample, although it becomes close
to the resonance in the increasingly broad region �see Fig. 9�.
The reason for this is that flipping spins in a small region
near the end of the sample do not significantly change the
dipolar field from the surface of the crystal, the integral term
of Eq. �21�, but strongly change the local contribution, last
term in this formula. Increasing �z due to resonance transi-
tions leads to the decrease in the local term that creates a
negative dipolar bias and prevents the system from crossing
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a
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~
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ED = 20, R/L = 0.1
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(b)(a)

FIG. 5. �Color online� Reduced front-speed v� vs the reduced bias W̃ext for different discretizations. In �a� for ẼD=100 and W̃ext�1 the
numerical results are in a good accordance with Eq. �52� �straight line�.

z/(2R)

tΓres

n

Wext = 5
ED = 100

~
~

FIG. 6. �Color online� Propagating front of cold deflagration for

ẼD=100 and W̃ext=5. Here ignition time was eliminated by a good
choice of the initial condition. The front speed is oscillating and
there are spatially periodic structures behind the front.
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FIG. 7. �Color online� Front-speed v� vs ẼD in the nonlaminar

regime for W̃ext=5.

D. A. GARANIN PHYSICAL REVIEW B 80, 014406 �2009�

014406-8



the resonance. After some time the region close to the reso-
nance becomes broad that is similar to the structure of the
cold-deflagration front �see Fig. 9�. In this way the initial
state for the cold deflagration is being prepared. The front

starts as the bias reaches the “magic” value of W̃ext that

weakly depends on ẼD. For ẼD=20 one has W̃ext=4.3 �that

corresponds to Bz−Bk�19 mT� and for ẼD=100 one has

W̃ext�5. At such a strong bias there is a quasiperiodic spatial
structure with discontinuous magnetization and the dipolar
field behind the front, as shown in Figs. 8 and 9. One can see
in Fig. 9 that in the moving front the bias is slightly below
zero. This means that the system is somewhat off-resonance
and this is the reason for a small front speed in this regime,
as shown in Fig. 5.

The next question is how to ignite cold deflagration for

arbitrary values of the external bias W̃ext given by Eq. �30�.
The answer is to sweep Bz up to this value of W̃ext and then
to stop this �global� sweep at some tmax,0. After that further
sweep Bz locally near the end of the sample, z=−L /2, using
a small coil. For the coil of radius R0 placed at z0 �the axis of

the coil coincides with the axis of the cylinder� the local
addition to Wext can be written in the form

�Wext�z,t� =
R0

2

R0
2 + �z − z0�2vW�t − tmax,0� �56�

with z0�−L /2. Numerical calculations with R0=R and z0=
−L /2 show that, indeed, with this method one can ignite

fronts at different biases W̃ext, including the laminar regime
�see Fig. 10�. Here, the front is much faster than in Fig. 8, in
accordance with the results for the front speed in Fig. 5�a�.
Total bias in the sample at different times is shown in Fig.
11. For instance, �
�rest=5000 corresponds to the stage of
the global sweep. All other times correspond to the local-
sweep stage, since the bias curves converge on the right side
of the sample where �Wext is small. Local sweep near the left
end creates an initial state for the front to start, as the bias
curves are approaching zero in a progressively large region
�blue curves�. As the front starts moving �red curves�, the
bias becomes positive on the left with nonlaminar features
near the end. But in the depth of the sample the front is

laminar corresponding to W̃ext=1.
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~ED = 100

Moving front54

2

0

~W

z/(2R)

Dipolar field created by slow sweep

Wext = -2.5, 0, 2, 4, 5

-2.5

FIG. 9. �Color online� Dipolar field in the crystal at different

values of W̃ext during sweep. After W̃ext=5 the front starts moving
and dipolar field in the sample becomes discontinuous.
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n

ε = 30
ED = 100

~~
Wext

FIG. 8. �Color online� Wall of tunneling at ẼD=100, ignited by

slow sweep of the bias field, 	=30. The process starts at W̃ext�5.
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FIG. 10. �Color online� Laminar front of tunneling at ẼD=100 and W̃ext=1 ignited by slow local sweep of the bias field. �a� Overview;
�b� zoom of the front region.
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VIII. DISCUSSION

In the main part of the paper it was shown that elongated
crystals of molecular magnets �practically Mn12 Ac� can ex-
hibit moving fronts of dissipative spin tunneling at biased
resonances, Eq. �3� with k�0. This phenomenon is resem-
bling magnetic deflagration,20,21 only the relaxation rate is
controlled by the dipolar field evolving self-consistently and
bringing the spins in the front region on and off tunneling
resonance, rather than by the temperature. Like deflagration,
it leads to destruction of the initial metastable ordered state,
this is why it can be called “cold deflagration.” A signature
of the cold deflagration is an incomplete transition from the
metastable to stable state. In Ref. 18 it was argued that cold
deflagration can be responsible for the experimentally ob-
served steps in dynamic hysteresis loops.

Of course, transitions at biased resonances result in en-
ergy release and warming of the sample, so that the two
mechanisms can coexist. In fact, magnetic deflagration was
observed in crystals of Mn12 Ac thermally isolated so that the
warming of the sample is efficient. Without thermal isola-
tion, cold deflagration does not face this competition. To fur-
ther reduce heating, it is preferable to work at low bias.

There are two regimes of cold deflagration: laminar re-
gime at low-bias Bz−Bk and nonlaminar regime at high bias.
In the laminar regime the magnetization in the front adjusts
so that the dipolar-field B�D� together with the external-field
Bz creates a nearly zero bias for the resonance transitions in
the front region with the width of order R, the transverse size
of the crystal. In the laminar regime the magnetization and
dipolar field in the sample are continuous and both the front
speed and the magnetization �metastable population� behind
the front can be found analytically in the practical limit of
the strong dipolar field, �Eqs. �53� and �41��. Remarkably,
both of these quantities do not depend on the strength of the
dipolar-field ED in this region.

In the laminar regime the estimation for the front speed is
v�R�res, where �res is the transition rate at resonance, W
=0 in Eq. �12�. At the boundary between the over- and un-
derdamped regimes, ���m� and thus �res��m� �that is re-
alized in the transverse field 3 T in Mn12 Ac at the k=1
resonance� cold deflagration already beats the regular “hot”
deflagration. Indeed, the latter has the speed v� l��Tf�,
where l depends on the thermal diffusivity but experimen-
tally is comparable with R and ��Tf� is the thermal activation
rate over the barrier at the flame temperature. Since ��T� at
high temperatures is determined by the rates of transitions
between adjacent levels near the top of the barrier that are
smaller than the same for low-lying levels such as �m� �one
has ��Tf��106 s−1 and �S−1�107 s−1� the hot deflagration
loses.

At higher-bias Bz−Bk the laminar regime breaks down,
the dipolar field cannot fully adjust to provide a nearly zero
bias in the front’s core, and the magnetization and the dipolar
field become discontinuous. There are frozen-in quasiperi-
odic spatial structures behind the front. Accordingly, the
front speed dramatically drops �see Fig. 5�, especially in the
case of a strong dipolar field. There is no analytical solution
in this range but the fit to the numerical results yields v
�1 /ED

2 . The boundary between the laminar and nonlaminar
regimes corresponds to Bz−Bk=5–10 mT.

It was shown that cold deflagration can be ignited by the
local sweep of the field Bz near an end of the crystal. This
local field can be produced by a small coil with increasing
current.

Another condition for the observability of the cold defla-
gration is sufficiently strong transverse field that allows tun-
neling transitions via low-lying levels.

At nonzero temperatures the rate of cold deflagration
should increase because of the activation to higher levels
providing a higher transition probability �see Eq. �10� of Ref.
18�.

Different kinds of disorder, such as solvent disorder, hy-
perfine fields from nuclear spins, etc., lead to the resonance
condition for tunneling being different at each lattice site.
Numerical calculations within the present simplified 1d
model show that the metastable populations adjust in a way
that the dipolar fields at different lattice sites within the cold-
deflagration front compensate for the random component of
the bias, so that the system is on resonance everywhere
within the front �see Fig. 5 of Ref. 18�. For spin-tunneling
fronts induced by sweep, there is no significant dependence
of the “magic” value of the external bias at which the front
starts on the disorder.
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